The N-terminus of RPA large subunit and its spatial position are important for the 5′->3′ resection of DNA double-strand breaks
نویسندگان
چکیده
The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5' strand to generate 3' ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5'->3' directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3'->5' helicase activity and DNA2's 5'->3' ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway.
منابع مشابه
Simulation of strand breaks induced in DNA molecule by radiation of proton and Secondary particles using Geant4 code
Radiotherapy using various beams is one of the methods for treating cancer, Hadrons used to treat cancers that are near critical organs. The most important part of the cell that is damage by ionizing radiation is DNA. In this study, damages induced in the genetic material of living cells (DNA) defined by the atomic model from the protein data bank (PDB) have been studied by radiati...
متن کاملModeling the distribution of deposited energy by alpha particles from Radon 223 decay and its effect on DNA
The ionizing radiations, through physical and chemical processes, lead to simple and complex single- and double- strand breaks, as well as base lesions to the DNA. In this study, taking into account all the physical and chemical processes involved in the interaction of ionizing radiation with matter, the initial damage induced to DNA was evaluated for 5.7 MeV alpha-rays from Radon 223 isotope....
متن کاملThe processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast.
Double-strand breaks (DSB) in yeast lead to the formation of repair foci and induce a checkpoint response that requires both the ATR-related kinase Mec1 and its target, Rad53. By combining high-resolution confocal microscopy and chromatin-immunoprecipitation assays, we analysed the genetic requirements for and the kinetics of Mec1 recruitment to an irreparable HO-endonuclease-induced DSB. Coinc...
متن کاملRole of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair
The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus...
متن کاملAnalysis of MRE11's function in the 5′→3′ processing of DNA double-strand breaks
The resection of DNA double-strand breaks (DSBs) into 3' single-strand tails is the initiating step of homology-dependent repair pathways. A key player in this process is the MRE11-RAD50-NBS1 complex, but its contribution to and mechanistic role in resection are not well understood. In this study, we took advantage of the Xenopus egg extract system to address these questions. We found that depl...
متن کامل